Weighing Clinical Evidence Using Patient Preferences: An Application of Probabilistic Multi-Criteria Decision Analysis
نویسندگان
چکیده
The need for patient engagement has been recognized by regulatory agencies, but there is no consensus about how to operationalize this. One approach is the formal elicitation and use of patient preferences for weighing clinical outcomes. The aim of this study was to demonstrate how patient preferences can be used to weigh clinical outcomes when both preferences and clinical outcomes are uncertain by applying a probabilistic value-based multi-criteria decision analysis (MCDA) method. Probability distributions were used to model random variation and parameter uncertainty in preferences, and parameter uncertainty in clinical outcomes. The posterior value distributions and rank probabilities for each treatment were obtained using Monte-Carlo simulations. The probability of achieving the first rank is the probability that a treatment represents the highest value to patients. We illustrated our methodology for a simplified case on six HIV treatments. Preferences were modeled with normal distributions and clinical outcomes were modeled with beta distributions. The treatment value distributions showed the rank order of treatments according to patients and illustrate the remaining decision uncertainty. This study demonstrated how patient preference data can be used to weigh clinical evidence using MCDA. The model takes into account uncertainty in preferences and clinical outcomes. The model can support decision makers during the aggregation step of the MCDA process and provides a first step toward preference-based personalized medicine, yet requires further testing regarding its appropriate use in real-world settings.
منابع مشابه
Estimating the value of medical treatments to patients using probabilistic multi criteria decision analysis
BACKGROUND Estimating the value of medical treatments to patients is an essential part of healthcare decision making, but is mostly done implicitly and without consulting patients. Multi criteria decision analysis (MCDA) has been proposed for the valuation task, while stated preference studies are increasingly used to measure patient preferences. In this study we propose a methodology for using...
متن کاملA Multi-Criteria Analysis Model under an Interval Type-2 Fuzzy Environment with an Application to Production Project Decision Problems
Using Multi-Criteria Decision-Making (MCDM) to solve complicated decisions often includes uncertainty, which could be tackled by utilizing the fuzzy sets theory. Type-2 fuzzy sets consider more uncertainty than type-1 fuzzy sets. These fuzzy sets provide more degrees of freedom to illustrate the uncertainty and fuzziness in real-world production projects. In this paper, a new multi-criteria ana...
متن کاملA modification of probabilistic hesitant fuzzy sets and its application to multiple criteria decision making
Probabilistic hesitant fuzzy set (PHFS) is a fruitful concept that adds to hesitant fuzzy set (HFS) the term of probability which is able to retain more information than the usual HFS. Here, we demonstrate that the existing definitions of PHFS are not still reasonable, and therefore, we first improve the PHFS definition. By endowing the set and algebraic operations with a new re-definition of P...
متن کاملA Multi-Criteria Decision Making for Location Selection in the Niger Delta Using Fuzzy TOPSIS Approach
Making an informed decision with regards to a suitable business location or site selection for organizations is becoming challenging for business decision makers globally; and even more challenging in business environment that are saddled with uncertainties. The continues raise of multiple criteria variation of site preferences has also necessitated the application of advanced decision making t...
متن کاملProbabilistic Power Distribution Planning Using Multi-Objective Harmony Search Algorithm
In this paper, power distribution planning (PDP) considering distributed generators (DGs) is investigated as a dynamic multi-objective optimization problem. Moreover, Monte Carlo simulation (MCS) is applied to handle the uncertainty in electricity price and load demand. In the proposed model, investment and operation costs, losses and purchased power from the main grid are incorporated in the f...
متن کامل